If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4=5t^2
We move all terms to the left:
4-(5t^2)=0
a = -5; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-5)·4
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-5}=\frac{0-4\sqrt{5}}{-10} =-\frac{4\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-5}=\frac{0+4\sqrt{5}}{-10} =\frac{4\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-5} $
| (3x+3)=(2x-8) | | 6t+13=19t | | s+42=3s+8 | | 2k+3k-4-2=14 | | 8(2x-10)=4(-20+4x) | | -10x+6-2x=-12x-14 | | x-65=-15 | | -3x+14=5x-10 | | 18x+4x-4=2(2x+7) | | 5w+14-w^2=0 | | 70.72+38.29-x-47=32 | | X^+-12x+36=0 | | 7(9h)=376 | | -5(-x-1)+4x=50 | | F(x)=2x^2/5+1 | | 2/d=9/6 | | 9.1=1.4(g-5.7) | | -4(2x+5)+x=-13 | | 0=-16t^2-30t+180 | | 9.1=4g-22.8 | | 0=-16t^2+30t+180 | | 3/4+12x5=25/4 | | 9z=–8+10z | | 9.1/(g-5.7)=1.4 | | 3/4+1/2x5=25/4 | | 34=-2x34=−2x | | 9.1/g-5.7=1.4 | | -x+7=19+2x | | x/4+5=-10 | | 2(p−4)−7=–3 | | k/22+581=561 | | 27z+17=746 |